Written with Dr Pierre Samozino (University Savoie
Mont Blanc)
Due to popular demand and frequent requests from
sport practitioners and researchers, we have decided to publish a spreadsheet
and tutorial for implementing our sprinting FVP field method based on split
times measurements during a 30-m, all-out sprint acceleration, from a standing
(2 or 3-point) start. This simple method has been initially proposed and
validated against force plate data by Samozino et al. in 2016, and used afterwards
in several publications (see here).
Download this spreadsheet HERE.
Watch the 10’ video tutorial here:
This spreadsheet will automatically
calculate the sprint force-velocity profile based on the following input
variables: 5 split times over a 30 or 40-m acceleration, air temperature and
pressure, stature and body mass of the athlete, based on the modeling of the
position-time curve by an exponential function.
After a quick adjustment of the 2 variables of the exponential model (maximal velocity Vmax and time constant Tau) to fit the actually measured split times, it will automatically display the FVP curves, the main mechanical outputs and the mechanical effectiveness. Note that you will need to install/use the Excel Solver add-in macro for this adjustment.
After a quick adjustment of the 2 variables of the exponential model (maximal velocity Vmax and time constant Tau) to fit the actually measured split times, it will automatically display the FVP curves, the main mechanical outputs and the mechanical effectiveness. Note that you will need to install/use the Excel Solver add-in macro for this adjustment.
For
full details on the definition and practical meaning of these variables, please
read this commentary paper.
In addition to exploring your athlete’s performance,
it will indicate the underlying mechanical variables, and help you design more
effective, individualized training content.
Furthermore, in the context of rehabilitation and
return-to-sport processes, knowing an athlete’s pre-injury profile is gold to
an effective, sprint-oriented rehabilitation and return-to-sport decision. See
Jurdan Mendiguchia’s works on the topic in 2014, 2016 and 2017.
This “profiling” test may be done with only 4 split
times (5, 10, 20, and 30m), but for more accuracy we recommend using 5 or 6.
As to the devices needed, well, it’s up to you, any
device that accurately measures split times may be used: timing gates, iOS app
MySprint, etc… But one thing is important to keep in mind: the most important
thing to ensure that the measurements are valid and the data make sense is that
the time measurement starts as soon as any propulsive action is produced. So
what we recommend if you are using timing gates and not the iOS app MySprint,
is that a system that reacts to the athlete’s first propulsive action triggers
the timing (see review here). In case of a trigger by a first pair of cells (eg
20 or 50 cm in front of the athlete’s starting position), the split times will
be underestimated, and thus F0 and Pmax variables will be largely
overestimated. This is how soccer players are sometimes described as “faster
than Bolt” in the News! When using this starting procedure, the athlete’s body
has in fact a high forward velocity at the moment of triggering, which leads to
erroneous values and performance/mechanics overestimations. For the same
reasons, a standing start from a still position must be used.
Finally, this is a short list of normative values
for the different mechanical variables, ranging from physically active (male)
individuals with no specific sprint experience to elite athletes (mostly rugby
players or sprinters), based on our own experience (please see the literature
on the topic for more details).
F0 (N/kg): from 3-4 to 10-12 N/kg
V0 (m/s): from 5 to 12 m/s
Pmax (W/kg): from 6-7 to 25-30 W/kg
RF max (%): from 20 to 60%
Drf (%): from -10 to -4%
Note that our group will soon publish an extensive
database for both male and female athletes.
Should you obtain values beyond
these standards, don’t blame the method or the spreadsheet, the issue is with
the device used to measure split times, and/or the starting/triggering
procedure. See our recent discussion on these overestimations here.
Using this model, this is the FVP profile of Usain
Bolt during the current 100-m World Record:
Ready, Set, Enjoy!