Co-written
with Carlos Balsalobre-Fernandez
This post
is about our collaboration to the development and validation of iOS apps for
sport performance analysis. These four apps are cheap, easy to use, only
require an iOS device (preferably with slow motion camera) and integrate
published algorithms for biomechanical analysis of human movement. They have
all be presented and compared to reference methods in published scientific
studies.
Introduction
Being
efficient on a sports field, on a paved road or a rugged path will depend on
the quality of your sleep, your emotional state or what you eat or drink, but
all things being equal, physiological and biomechanical factors will also influence
your performance. Good news, we've some cheap and valid apps that will help you
better identify and improve these performance factors. While heart rate and
running or pedaling speed were often the only « physiological »
variables easily accessible, the advent of GPS receivers and smartphones has
opened a whole new dimension. Professional and amateur athletes will soon have
the equivalent of a sport science laboratory in their pocket.... for those who
are interested in further discovering and studying their capabilities.
Fortunately, digital-free outdoor sport will still be possible!
The
improvement of the muscular qualities involved in "explosive"
disciplines such as jumping or sprinting is a crucial factor for training. Those
who believe that the physical qualities do not explain the overall performance
in a sport like football or rugby are right! But jumping a little higher or
accelerating a little harder doesn't hurt, ask Cristiano Ronaldo if his
phenomenal vertical leap did not help him to win a few important matches...
Similarly, the French Rugby 7 team would probably not perform the same without
his dragster Terry Bouhrawa and his blazing acceleration. A pure sprinter will
never be a good football or rugby player without years of training, but between
two good team sports players, the one who can jump higher or run faster will
certainly have an advantage in the game. Citius = Altius = bonus!
In his
masterpiece "Le mouvement" (published in 1894), Etienne-Jules Marey,
considered as the first exercise physiologist and biomechanist, showed his analysis
of human and animal movement. His "chronophotography" method allowed
him to study many movements including jumping and sprinting, using photography
tools with series of images, approaching the rate of 20 to 24 frames per
second. Beyond advancing knowledge about human movement with this technical
innovation, Marey is considered to be one of the precursors of the scientific
film, or even the film itself.
Etienne-Jules Marey (Beaune, 1830 - Paris, 1904), doctor and French physiologist, successor of Claude Bernard at the National Academy of Sciences, of which he was President, was one of the precursors of the scientific movement analysis. He invented photographic and cinematographic tools and methods for the observation of moving bodies. Most of his work on this theme are exposed in his major work: « Le Mouvement ». In some excerpts from a letter written to his mother, he recounted the issue of the accuracy of the measurements, but also administrative and technological constraints to the development of knowledge on human movement. This text has not aged a bit! |
Latest Apple (tablets and phones) devices allow video measurements at
240 fps. About 10 times faster than the revolutionary devices designed by
Etienne-Jules Marey at the end of the XIXth century. This rate of 240 fps is similar
or even higher than that of cameras used in the laboratory for the analysis of
human movement and sports. Indeed, many publications in Biomechanics analyzed
jumping, walking or running based on expensive cameras at frequencies of 100 to
200 fps. Happy coincidence, this advanced technology comes at the same time as
the publication and validation of mathematical approaches to analyzing
determinants of sport performance on the basis of simple parameters: jump
height, time of contact with the ground or running speed during a sprint (see
below). This technology-science context gave birth to cheap iPhone and iPad apps
(less than 10 USD), that have been but scientifically validated! Increasingly
popular in sports structures, they enable lower cost, measurements of variables
of the sports performance far much more complicated to implement. One of their
advantages is that they perform many calculations in a fraction of a second. A
laboratory in the pocket of the coaches, and athletes of all levels...
1/ Jump performance and force-velocity-power profile with MyJump
The work carried out by
our team allowed these past years to validate a complete method of analysis of
the force-velocity profile and performance during short, maximal
impulse ballistic movements (e.g. vertical jump or a first step
during acceleration) on the basis of the simple measure of jump height (all
papers here). Performing a few loaded vertical jumps allow to know the
individual profile of the athlete, compare it to its optimal profile (i.e. the
profile with which jump height will be maximized, for a given level of maximal
power output), and in turn specially to design an effective and individualized
training. A kind of personalized prescription. With MyJump, jump height is
measured simply by filming the athlete's feet. By watching the jump frame by
frame, tap on the screen when the feet leave the ground, and again when the
feet touch the ground on landing a few tenths of a second later. The
application basically counts the number of frames between the two events,
computes the time spent in the air, and the laws of falling bodies do the rest,
thank you Galileo and Newton. Simplicity is the ultimate sophistication.
As body mass is entered in the user profile, the app
calculates the maximal power of the athlete, his/her force-velocity profile and
optimal profile with a few clicks on the screen, just by making a few
additional jumps (see method here) with different levels of load on the shoulders. As in the
illustration, the individual force-velocity deficit informs on training lead (physical
capability to develop, magnitude of the deficit, etc.) and repeating the test
over the training period allows a very easy follow-up. The French volleyball
federation and many clubs of volleyball or basketball are currently using the
application in the monitoring of the physical qualities of the players, and the
individualization of training program (see here).
This app is so simple and cheap that a rigorous proof of
validity was necessary to reassure researchers and coaches who sometimes think
that a good tool is necessarily costly, and vice versa, a "gadget"
for iPhone can not be reliable. This validity has been tested by Carlos
Balsalobre-Fernandez and his collaborators who have compared the jump height
given by the app to that calculated by the Rolls Royce of biomechanics
measurement devices: the force plate. The findings show a very high concurrent
validity and reliability of measures (paper here), which was also mentioned in the very
serious British Journal of Sports Medicine (here). In addition, several other
studies have replicated the measurements and clearly confirmed this validity…
Figure 1. Left : with MyJump, you just need to film the feet of the athlete in slow motion and tap on the screen at take off and landing, easy. Middle : after a few additional loaded jumps, the app displays the force-velocity profile of the athlete, in comparison to his optimal profile, i.e. the profile with which jump height will be maximal, for the level of maximal power of the athlete (51.8 /kg here). This profile is computed according to Samozino et al.'s method (see here). Right : then, the app displays a training program that should be followed in order to reduce the force-velocity imbalance (gap between actual and optimal profiles) and in turn improve jump height (see this study for details). Next step: training ! |
2/ Sprint acceleration performance and force-velocity-power profile with MySprint
Now
that you have improved your jump performance, let’s check your sprint acceleration.
Using the same simple idea (i.e. filming sports movement in order to identify
the key elements by watching the slow motion video), MySprint app will ask you
to film a 30-m standing start acceleration, and then touch the screen when the
athlete’s body crosses markers set every 5 meters. Then, the app calculates sprint
performance and split times, but also computes their production of force onto
the ground and external power, as well as the effectiveness of their ground
force application (i.e. how horizontally their push is oriented…the more
horizontal the better). These biomechanical variables explain a major part of
acceleration and overall sprint performance (see this study), and their easy and
accessible measurement is a valuable aid for training, on an individual basis. For
instance, for a same given performance over 20 meters, we observed for that
some international Rugby 7s players had an effective ground force application
but lacked overall strength, while others had impressive muscle power but a
very inefficient push on the ground. This information is helpful to guide the
training of each player according to his/her own needs, and profile. The
calculations involved here, which are included in the app, also use the laws of
Newtonian mechanics applied to the body of the athlete (details here), and only require
to know the body mass of the subjects, and either their 5-m split times over a
30-m, or their running speed as a function of time (e.g. with a radar).
Figure 2. Left: with MySprint, the
athlete is filmed in slow motion, so that 5-m split times are calculated when
you tap on the screen as the athlete’s body crosses each 5-m pole. Right: then, from the 5-m splits, the
app computes the main mechanical outputs during the acceleration using the method validated by Samozino et al. (see here): horizontal
net force, velocity, power, and the effectiveness of ground force application
(i.e. the horizontal orientation of the ground reaction force. As for MyJump,
data are stored in the athlete’s profile, and may be sent by email for deeper
analysis and individualized training.
|
These
approaches using individualized strength-speed-power training have been recently
discussed (here), and as for MyJump, MySprint validity has been tested by comparison
with reference devices for sprint assessment: photocells and radar. As
for MyJump, the results show a very good agreement (article here).
3/ Analyzing and monitoring running biomechanics with Runmatic
For those who prefer
running from longer durations, an application developed on the same principle
(Runmatic), allows a biomechanical analysis of the running pattern. The latter
is often described as a "spring-mass" system: the rider is mechanically
described as a mass bouncing on a spring. As simple as it may seem, this model
correctly describes the overall mechanical behavior of the human body during
running. Based on the measurement of ground contact and flight time (obtained
from slow-motion video recording…), it is possible to calculate the main
features of the spring-mass system: peak force applied onto the ground,
vertical displacement of the center of mass during the support phase, and
musculo-tendinous stiffness of the lower limb (see method here). These variables, as well as the
differences and asymmetries between right and left leg were usually measured on
costly instrumented treadmills or force plates, or with relatively heavy to
implement and/or costly field tools such as opto-electronic rails. From the
video recording of the runner (see figure), Runmatic allows coaches and
researchers to calculate all these variables and follow their changes over
time, with training, or even with the development of running-related injuries.
Same procedure: a slow motion video, a few taps on the screen when the feet
come in contact with the ground and take off, et voilà ! As for the other apps,
a validation has been performed in comparison to reference devices for contact
and flight time measurement (article here).
4/ Measuring your maximal strength (1RM) with PowerLift
The last
of these applications uses the principle of the video capture of the
displacement of a bar or body during traditional strength and conditioning exercises.
Based on the number of images (hence time) flowing between the beginning and
the end of the thrust, Powerlift calculates the average speed of ascent of the
bar/body. Then, as MyJump, by performing several tests with sub-maximal loads,
the application calculates the maximum load that may be lifted (at an extremely
low speed). This approach is based on the fact that the speed at which each of
us "pushes" his own 1RM is fairly stable and common to all the
athletes, while the load itself is very variable. The app determines the 1RM
value according to the speed of the movement, and not the load (see for instance here).
The data computed by the app have been recently shown reliable in comparison to reference devices (article here).